министерство строительства и жилищно-коммунального хозяйства российской федераl (минстрой россии)

федеральное государственное бюджетное учреждение «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН)

Mcx. ot_	HRUS	No. HEUS	
	(K) (O)	(4,0)	

«УТВЕРЖДАЮ» Директор НИИСФ РААСТ И. Д. Шубин (подпись) «14» января 2025 г.

ПРОТОКОЛ АКУСТИЧЕСКИХ ИСПЫТАНИЙ № 3/5/ от 14.01.2025 г.

Основание для проведения испытаний – договор на проведение испытаний ООО «ТехноСонус».

Испытание на соответствие -

Требованиям ГОСТ 31704-2011 «Материалы звукопоглощающие. Метод измерения звукопоглощения в ревербераионной камере» и ГОСТ 23499-2009 «Материалы и изделия звукоизоляционные и звукопоглощающие строительные».

Производитель продукции:

ООО «ТехноСонус-Центр»

Юридический адрес: 600014, Владимирская область, г. Владимир, ул. Лакина, д. 4, пом. 35 Фактический адрес: 601352, Владимирская область, Судогодский район, п. Бег, ул.

Механизаторов, д. 1, литер А

Телефон/Факс: Тел: +7(4922) 52-20-56.

Предъявитель образцов:

ООО «ТехноСонус»

Юридический адрес: 123308, Россия, г. Москва, вн. тер. г. Муниципальный Округ

Хорошевский, Хорошевское шоссе, дом 43

Фактический адрес: 123308, Россия, г. Москва, вн. тер. г. Муниципальный Округ

Хорошевский, Хорошевское шоссе, дом 43

Телефон/Факс: Тел: +7 (495) 18-11-33.

Сведения об испытываемых образцах:

ТермоЗвукоИзол — многослойный материал, состоящий из иглопробивного калиброванного мата высокой плотности в оболочке из нетканого полотна.

ТермоЗвукоИзол Стандарт S, 10мм

ТермоЗвукоИзол Стандарт, 15мм

ТермоЗвукоИзол Стандарт S, 10мм в два слоя

Дата получения образцов — 25 декабря 2024г.

Дата испытаний – 10 января 2025г.

Результаты испытаний - приведены в Приложениях 1 – 3

Research Institute of Building Physics Russian Academy of Architecture and Construction Sciences (NIISF RAACS)

Заключение

Акустические испытания предоставленных образцов марки «ТермоЗвукоИзол» (ТЗИ) по определению реверберационных коэффициентов звукопоглощения были выполнены методом реверберационной камеры в соответствии с межгосударственным стандартом ГОСТ 31704-2011 «Материалы звукопоглощающие. Метод измерения звукопоглощения в реверберационной камере».

Результаты проведенных испытаний позволяют сделать вывод, что данный материал возможно использовать в качестве элемента, корректирующего акустическую обстановку больших и малых помещений. Монтаж возможен как на стены, так и на потолки помещений.

Проведенные акустические испытания образцов звукоизоляционных материалов «ТермоЗвукоИзол Стандарт S», «ТермоЗвукоИзол Стандарт», имеющих толщину (без нагрузки) 10мм, 15мм соответственно, представляющие собой многослойные композиты показали, что в соответствии с требованиями ГОСТ 23499-2009 по значениям величин динамических характеристик они могут быть отнесены к классу эффективных звукоизоляционных прокладочных материалов.

Применение прокладок из уложенных материалов «ТермоЗвукоИзол Стандарт S», «ТермоЗвукоИзол Стандарт», «ТермоЗвукоИзол Стандарт S» в два слоя, имеющих толщину (без нагрузки) 10мм, 15мм в конструкциях перекрытий с «плавающими» стяжками, имеющими поверхностную плотность 80-100 кг/м², обеспечивает улучшение индекса изоляции ударного шума, ΔL_{nw} , на 30, 32 и 42 д \overline{b} соответственно.

Ответственный исполнитель

Any

Приложение 1 к протоколу испытаний № *3/31* от 14.01.2025 г

Таблица 1. Частотные характеристики реверберационных коэффициентов звукопоглощения α_p (f) образцов ТермоЗвукоИзол Стандарт S в третьоктавных полосах частот, толщиной 10 мм.

0	140	140,5	140,5	,NO	04.
Среднегео	метрические частот	гы 1/3 октавных	Коэффициент относа αр (f)	г звукопоглощен	ия без
	100			0,06	
	125			0,18	
	160			0,22	
0	200	10	.0	0,20	
	250		11/1/2	0,27	
	315		9.0	0,31	460
	400		5	0,34	1
	500	\Diamond		0,35	
	630			0,42	
	800		P .	0,43	
5	1000	12,5	2,6	0,42	.20
70,	1250	Ch To	11/20	0,50	CY LI
)`	1600	(°, °O, °V	(0)	0,55	44.0
	2000	<u> </u>		0,61	^^
	2500	· \		0,73	
	3150			0,79	
0	4000	.0	.0	0,94	.0
15	5000	18.19	18.19	0,88	

Таблица 2. Частотные характеристики реверберационных коэффициентов звукопоглощения α_p (f) образцов ТермоЗвукоИзол Стандарт S в октавных полосах частот, толщиной 10 мм.

Среднегеометрические частоты октавных полос, Гц	Коэффицие	ент звукопоглощен $lpha_p(f)$	ия без относа
125	COR	0,15	,0'5
250	4 5	0,25	100
500		0,35	
1000		0,45	
2000		0,65	
4000		0,85	

Значение индекса звукопоглощения без относа а_w = 0,45 (Класс D)

Ответственный исполнитель

Приложение 2 к протоколу испытаний № <u>3/31</u> от 14.01.2025 г

Таблица 3. Динамические характеристики материалов «ТермоЗвукоИзол Стандарт S», «ТермоЗвукоИзол Стандарт».

Наименование материала и толщина образца (без нагрузки)	Динамический модуль упругости, Ед, МПа, динамическая жесткость s', МН/м3, и коэффициент относительного сжатия, єд, при нагрузках на образец, в Па				
	2000		5000		
	Ед	8д	Ед	εд	
ТЗИ Стандарт S Толщина 10мм	0,17	0,57	0,20	0,65	
ТЗИ Стандарт S Толщина 20мм	0,23	0,50	0,30	0,55	
ТЗИ Стандарт Толщина 15мм	9 0,20	6 0,40	9 0,35	5 0,6	

Ответственный исполнитель

fun

Приложение 3 к протоколу испытаний № <u>3/31</u> от 14.01.2025 г

Таблица 4. Частотные характеристики снижения приведенного уровня ударного шума и индексы улучшения изоляции ударного шума сборной «плавающей» стяжкой с поверхностной плотностью 80-100 кг/м², уложенной по слою материалов «ТермоЗвукоИзол Стандарт S», «ТермоЗвукоИзол Стандарт».

	<u> </u>		(
Частота 1/3-	Снижение приведенного уровня ударного шума «плавающей» стяжкой с поверхностной плотностью 80-100 кг/м², дБ			
октавных полос, Гц	ТЗИ Стандарт S Толщина 10мм	ТЗИ Стандарт S Толщина 20мм	ТЗИ Стандарт Толщина 15мм	
100	10,8	16,8	10,0	
125	8,8	22,0	14,5	
160	11,8	22,6	13,7	
200	13,9	29,8	16,8	
250	13,7	29,6	15,7	
315	19,8	30,6	19,5	
400	19,7	30,8	20,8	
500	22,0	32,8	24,0	
630	24,4	36,2	26,6	
800	25,3	40,8	29,2	
5 1000	26,5	45,0	31,3	
1250	30,3	51,4	35,0	
1600	33,2	52,2	37,9	
2000	36,0	54,6	41,4	
2500	39,5	56,0	45,9	
3150	41,3	63,0	50,1	
Индекс изоляции	00	.0	.0	
улучшения ударного шума, ΔL_{nw} , дБ	30	42	CHR 32	

Ответственный исполнитель

Any